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I. Introduction to Class Imbalance problem

 Class Imbalance problem

 It is the problem in classification where the total number of a class of data (positive) is far less than the 
total number of another class of data (negative).

 This problem exists for many domains.
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 Below plots are the class imbalance situation I actually saw.
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 Below plots are the class imbalance situation I actually saw.

 It is a bar that shows the output quantity divided by the remain quantity.
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 Class Imbalance problem

 Below plots are the class imbalance situation I actually saw.

 It is a bar chart about whether the lot will be put into the next process.
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 RandomForestClassifier(max_depth=30, n_estimators=200)

 Train dataset ->  Accuracy : 0.90089 | F1 : 0.652276 | Recall : 0.98723 | Precision : 0.45484

 Validation dataset -> Accuracy : 0.83854 | F1 : 0.19458 | Recall : 0.29088 | Precision : 0.14618
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II. How to solve Class Imbalance problem

 Sampling Techniques

 Algorithm Techniques

 Feature selection Techniques

 Over Sampling vs. Under Sampling

 AdaBoost ,……

 Lots of feature selection techniques

출처 : Class Imbalance Problem in Data Mining: Review 
1Mr.Rushi Longadge, 2 Ms. Snehlata S. Dongre, 3Dr. Latesh Malik
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II. How to solve Class Imbalance problem

 Over Sampling

② SMOTE : Synthetic Minority Over-Sampling.

 After generation is complete, apply a classification algorithm.
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II. How to solve Class Imbalance problem

 Comparison Under sampling with Over sampling 

Advantages Disadvantages

Under Sampling

① We reduce the size of the training dataset 
by removing the data from the negative 
(majority) class.

② Time to train model when using under 
sampling techniques is shorter than 
oversampling techniques.

① Because we remove observations, we can 
not use the information that we have in 
the modeling process.

Over Sampling

① Since observations are not removed, no 
loss of information occurs.

② Because of the use of interpolation, class 
boundaries do not change. That is, the 
distribution of the positive (minority) class 
does not change.

① Because it creates observations for the 
positive (minority) class, it takes larger 
time to train the training data than under
sampling.
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 Boosting

 Boosting is an ensemble method that creates a predictive model by continuously building weak models 
to better classify misclassified observations.

 It takes a long time to generate a weak classifier based on misclassified observations, but it performs 
better than normal classifiers(ex. Decision Tree, logistic regression).
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III. RUSBoost vs. SMOTEBoost

Hybrid = (Sampling + Algorithm) technique
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IV. Result of experiments

 Datasets

 Experiments were conducted on 15 class imbalance data.

 To ensure independence of each result value, 10-fold cross validation was performed 10 times in total.
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V. Conclusion

 Conclusion

 You should use the appropriate algorithm for your problem situation.

 For example, if you do not know whether the data is very large and can be operated on the memory, it is 
recommended to select the RUS algorithms.

 If the training dataset is very small and the number of positive (minority) class is also small, you should 
use the SMOTE algorithms.



Thank you.


